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Many applications can benefit from 
distributed systems based on multiple 
computers interconnected by a com-
munication network. Distributed 

systems use inexpensive high-performance computers
and can be configured closely to the application. Infor-
mation can be replicated on several processors to
improve performance and to provide fault tolerance.
However, programming distributed applications is dif-
ficult, particularly when replicated information must
remain consistent as it is updated in the presence of
faults. Since many messages may be required, recovery
from faults may introduce delays, making real-time
performance objectives difficult to achieve.

Ordered multicast group communication systems
are a useful infrastructure on which complex distrib-
uted applications can be built. Isis [4], Horus [18],
Trans/Total [12, 15], Transis [6], Amoeba [8], and
Delta-4 [17] are examples of such systems.

The Totem system, developed at the University of
California, Santa Barbara, provides reliable, totally
ordered multicasting of messages over local-area net-
works (LANs) and exploits the hardware broadcasts

Totem: A Fault-Tolerant Multicast
Group Communication System

L. E. Moser, P. M. Melliar-Smith, 
D. A. Agarwal, R. K. Budhia, and 

C. A. Lingley-Papadopoulos

GroupCommunication

Delivering multicast messages, Totem

invokes operations in the same total

order throughout the distributed 

system. The result: consistency of repli-

cated data and simplified programming

of applications.



www.manaraa.com

of such networks to
achieve high perfor-
mance (see the sidebar
“Why Totem?”). Total
ordering of messages
simplifies the program-
ming of fault-tolerant dis-
tributed applications. If
distributed operations
are derived from the
same messages in the
same total order, consis-
tency of replicated infor-
mation is easier to
maintain. Simplified pro-
gramming results in
fewer programming
errors and increased reli-
ability for the application.

Totem is intended for complex applications in
which both fault tolerance and real-time perfor-
mance are critical. Such complex applications are
typically built as asynchronous event-driven distrib-
uted systems. The types of applications that can ben-
efit from Totem’s totally ordered message delivery
service include many systems most important to our
society, such as air traffic control, industrial automa-
tion, transaction processing, banking, stock market
trading, intelligent highways, medical monitoring,
and replicated database systems.

The characteristics that make Totem suitable for
complex applications, particularly soft real-time
applications, include:

• High throughput and low predictable latency;
• Rapid detection of, and recovery from, faults;
• Systemwide total ordering of messages, even for

systems in which the network can partition and
remerge, and for systems in which process groups
can intersect; and 

• Scalability to larger systems based on multiple
LANs, interconnected by gateways, within the same
geographical area.

With Totem, correctness of message ordering and
configuration changes are ensured, even in the pres-
ence of multiple faults, and excellent performance is
achieved.

Totem Services
The Totem system provides reliable totally ordered
multicasting of messages to processes within process
groups over a single LAN or over multiple LANs
interconnected by gateways. Totem provides this
delivery service in the presence of various types of
communication and processor faults, including mes-

sage loss, network parti-
tioning, and processor
crash, as well as omission
and timing faults, but not
completely arbitrary
faults.

The structure of the
Totem system as a hierar-
chy of protocols is shown
in Figure 1. With refer-
ence to this hierarchy, we
say that a message is
received from the next
lower layer of the hierar-
chy and is delivered to the
next higher layer. When
messages are received,
they may not be in the
correct order and, thus,
may need to be reordered
before being delivered to
the next higher layer.

The bottom layer of
the Totem system hierarchy is a best-effort multicast
service, which typically uses the user datagram proto-
col (UDP) to exploit the high-performance hardware
broadcasts of LANs. The single-ring protocol converts
the best-effort multicasts into the service of reliable
totally ordered delivery of messages on a single LAN
while providing fault detection, recovery, and config-
uration-change services. The multiple-ring protocol
uses the single-ring protocol and provides global total
ordering of messages, as well as network topology
maintenance services. The multiple-ring protocol,
using information from the process group interface
above it, forwards messages through the gateways to
the LANs on which they are required. The process
group interface delivers messages to the application
processes in the appropriate process groups and pro-
vides process group membership services. The Totem
system can also operate with the process group inter-
face directly on top of the single-ring protocol.

The Totem system provides two reliable totally
ordered message delivery services, as requested by the
originator of the message, called agreed and safe:
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Why Totem?

T
otem is a North American Indian word for a small

natural object serving as the emblem of a family or

group, passed from one generation to the next, just

as the code of the Totem system has passed between

successive generations of students at UCSB. The name

Totem derives from the total order and temporal pre-

dictability of the Totem system, while its hierarchical

structure resembles a totem pole.
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• Agreed delivery guarantees that, when a processor
delivers a message, it has already delivered all
prior messages originated by processors in its cur-
rent configuration and timestamped within the
duration of that configuration. 

• Safe delivery further guarantees that before a
processor delivers a message, it has determined
that every other processor in its current configura-
tion has received the message. Safe delivery is use-
ful, for example, in transaction processing systems
where a transaction must be committed by all of
the processors or none of them.

Both of these services deliver messages in a single
systemwide total order (linear sequence) that
respects Lamport’s causal order [10]. A processor
may not need to deliver all of the messages, and, in
the presence of faults, it may not be able to deliver all
of them. When a processor fails or the network parti-
tions, it may be impossible to determine which mes-
sages were delivered in which order by the processor
before it failed, or whether messages were delivered
by processors in other components of the partitioned
network. Delivery of messages in a consistent sys-
temwide total order is not easy when faults can occur.

Extended virtual synchrony [14] ensures that the
agreed- and safe-delivery guarantees are honored
within every configuration, even if faulty processors
are repaired or if a partitioned network remerges
(see the sidebar, “Virtual Synchrony and Extended
Virtual Synchrony”). When a fault occurs, a transi-
tional configuration with a reduced membership is
introduced, all members of which can honor the

delivery guarantees. If the network partitions, proces-
sors in different components of the partitioned net-
work may deliver different messages, but they never
deliver the same messages in different orders. For
many applications, this is a very important property.

Consider, for example, a commercial enterprise in
which purchases received over the Internet before
the close of business in New York are handled by the
New York office and afterward by the San Francisco
office. If the system were to partition at the critical
moment (without extended virtual synchrony), it is
possible that in New York the close of business mes-
sage is ordered before the purchase message, while in
San Francisco it is ordered after the purchase mes-
sage. Both offices would then regard the other office
as responsible for the purchase.

Interestingly, extended virtual synchrony can be
guaranteed only if messages are born-ordered, mean-
ing that the relative order of any two messages is
determined directly from the messages, as broadcast
by their sources. The Totem system uses born-
ordered messages, but some other multicast group
communication systems do not.

The Totem Single-Ring Protocol
The Totem single-ring protocol [1, 3, 13] provides
reliable totally ordered delivery of messages using a
logical token-passing ring superimposed on a LAN,
such as an Ethernet. The token circulates around the
ring as a point-to-point message, with a token retrans-
mission mechanism to guard against token loss. Only
the processor holding the token can broadcast a mes-
sage. The token, shown in Figure 2, provides total
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Virtual Synchrony and Extended Virtual Synchrony 

I
n group communication systems, the delivery and subsequent processing of multicast messages can alter related or repli-

cated data items, maintained by several processes. If the messages are received in different orders by different group

members, the data at those processes might become inconsistent. Moreover, if processes fail, or if they leave or join the

process groups dynamically, different processes can have different views of the process group membership, which again

might result in inconsistent data.

The virtual synchrony model [4], introduced for Isis, orders group membership changes along with the regular messages. It

ensures that failures do not result in incomplete delivery of multicast messages or holes in the causal delivery order. It also

ensures that, if two processes proceed together from one view of the group membership to the next, they deliver the same

messages in the first view. Virtual synchrony does not constrain the behavior of faulty or isolated processes. Faulty processes,

if they recover, are regarded as new processes. In a primary partition strategy, such as that of Isis, if the system partitions, one

component of the partition (the primary component) continues to operate. Processes in other components are deemed faulty.

Processors and processes do, however, recover after failure with stable storage intact, and networks do remerge after

partitioning. In different components of a partitioned network, processes can operate concurrently without being able to

communicate with each other. Thus, the message delivery guarantees provided by a process can refer only to its local com-

ponent, which suffices for messages delivered only in that component. However, while the network is becoming partitioned

or while a process fails, some messages might be delivered in more than one component of the network.

The extended virtual synchrony model [14], introduced for Totem, extends the model of virtual synchrony to systems in

which processes can fail and recover and in which the network can partition and remerge. Even in such systems, the message

delivery guarantees are strictly honored. The same messages may be delivered in two or more components of a partitioned

network, but the message ordering is consistent in all of them. Moreover, some processes may not have received a message,

and so the other processes are told which processes are known to have received it. Extended virtual synchrony does not

solve all the problems of recovery in a fault-tolerant distributed system, but it does avoid inconsistencies that make recovery

unnecessarily difficult.
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ordering of messages, rapid detection of
faults, and effective flow control.

Message Ordering
In the Totem single-ring protocol, a
sequence number field in the token,
called seq, provides a single sequence of
message sequence numbers for all mes-
sages broadcast on the ring, and thus a
total order on messages. When a processor broad-
casts a new message, it increments the seq field of the
token and gives the message that sequence number.
Other processors recognize missing messages by
detecting gaps in the sequence of message sequence
numbers, and request retransmissions by inserting
the sequence numbers of the missing messages into
the retransmission request list of the token. If a
processor has received a message and all of its prede-
cessors, as indicated by the message sequence num-
bers, it can deliver the message as an agreed message.

The all-received-upto field, or aru, of the token
enables a processor to determine, after a full token
rotation, a sequence number so that all processors on
the ring have received all messages with lower
sequence numbers. A processor can deliver a mes-
sage as a safe message if the sequence number of the
message is less than or equal to this sequence num-
ber. When a processor delivers a message as safe, it
can reclaim the buffer space used by the message
because it will never need to retransmit the message.

One might think that the continuously circulating
token would result in increased overhead and
reduced performance. The performance of other
ordered multicast protocols is limited by input buffer
overflow under high loads, causing message loss and
retransmission. In Totem, the token provides accu-
rate information on the number of messages trans-
mitted during the previous token rotation. Using this

information, Totem’s flow-control mech-
anism limits transmissions to ensure that
input buffers seldom overflow, allowing
Totem to operate at higher throughput
than other protocols.

The token also provides information
about the aggregate message backlog of
the processors on the ring, allowing a fair-
er allocation of bandwidth to processors

than simpler schemes, such as the fiber distributed
data interface (FDDI). The Totem flow control mech-
anism provides excellent protection against fluctua-
tions in processor loading but is vulnerable to
competition for the input buffers from unanticipated
network traffic on the LAN. Under high loads, Totem
incurs relatively little variation in the latency to mes-
sage delivery, an important factor for real-time appli-
cations.

Local Configuration Services
The Totem single-ring ordering protocol is integrated
with a membership protocol that provides a member-
ship or configuration service for a single LAN, including
addition of new and recovered processors and deletion
of faulty processors. Faulty processors are detected by
timeouts. New or restarted processors are detected by
the appearance of messages on the LAN from proces-
sors that are not members of the current ring. Like
Transis [6], Totem handles network partitioning and
remerging of components of a partitioned network.

The Totem single-ring membership protocol
ensures:

• Consensus. Every member of a configuration
agrees on the membership of that configuration.

• Termination. Every processor installs some config-
uration with an agreed membership within a
bounded time unless it fails within that time.

Subject to these consensus and ter-
mination requirements, the mem-
bership protocol aims to form as
large a membership as possible.

The well-known Fischer, Lynch,
and Paterson impossibility result
[7] demonstrates that, in a com-
pletely asynchronous system, it is
impossible for processors to reach
consensus in the presence of even
a single crash failure. Chandra and
Toueg [5] have shown, however,
that consensus is possible in an
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asynchronous system subject to faults—if an unreli-
able failure detector is provided. We employ this
strategy. Totem’s failure detector uses timeouts and
may exclude a slow processor from the membership,
even though it has not actually failed.

The Totem single-ring membership protocol
achieves consensus in bounded time, even if further
faults occur, by reducing the membership until con-
sensus is reached and by using timeouts that bound

the time spent in any state of the membership proto-
col. The protocol can terminate in a singleton mem-
bership; however, with an appropriate choice of
timeouts and with judicious use of randomization, the
probability of a singleton membership is very small.

After reaching consensus on the membership, the
membership protocol constructs a new ring on which
the ordering protocol can resume operation, gener-
ates a new token, and recovers messages not yet

received when the fault occurred. To install a
new regular configuration, the protocol delivers
two Configuration Change messages, rather
than the one message that might have been
expected. The first Configuration Change mes-
sage introduces a transitional configuration of
reduced size that excludes the faulty or inacces-
sible processors. Delivery of this message indi-
cates that the agreed and safe delivery
guarantees now apply only to the smaller transi-
tional configuration. Within the transitional
configuration, the remaining messages of the
old configuration are delivered. After these
messages are delivered, the second Configura-
tion Change message is delivered, introducing
the new regular configuration.

The Totem Multiple-Ring Protocol 
The Totem multiple-ring protocol [1, 2, 13]
operates over multiple LANs interconnected by
gateways. Imposed on each LAN is a logical
token-passing ring on which the single-ring pro-
tocol operates. The multiple-ring protocol pro-
vides essentially the same services—with the
same properties—as the single-ring protocol. In
particular, the message-ordering service pro-
vides agreed and safe delivery, and the topology
maintenance service provides consensus and
termination for changes in the topology.

Message Ordering
To achieve a global total order of messages over
all rings, the Totem multiple-ring protocol uses
Lamport timestamps1 and delivers messages in
timestamp order. Messages with the same time-
stamp are delivered in the order of their source
ring identifiers. Delivery of messages in time-
stamp order guarantees global consistency of
message ordering. However, before a processor
can deliver a message in timestamp order, it
must know it will never subsequently receive a
message with a lower timestamp.

Messages are generated with increasing time-
stamps and sequence numbers on each individ-
ual ring. The gateways forward messages in
sequence number order from one ring to the
next, as shown in Figure 3. When a gateway
broadcasts a forwarded message, it gives the
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message a new sequence number for the
next ring so the message can be reliably
delivered on that ring. The timestamp of
the message, however, remains
unchanged. The single-ring sequence
numbers (which contain no gaps), togeth-
er with forwarding of messages in
sequence number order, ensure that there
are no missing messages.

For each ring from which it might
receive a message, a processor maintains a recv_msgs
list of messages originated on that ring and received
from the single-ring protocol, as shown in Figure 4. A
processor can deliver a message as an agreed mes-
sage, and remove it from the recv_msgs list, if the mes-
sage has the lowest timestamp of all messages in the
recv_msgs lists and if none of the recv_msgs lists is
empty. Because messages from the same source ring
are forwarded in the order of their sequence num-
bers—also the order of their timestamps—a proces-
sor then knows it will never receive a message with a
lower timestamp from that ring.

The gateways periodically broadcast messages,
called Guarantee Vector messages, for the rings to
which they are attached. The Guarantee Vector mes-
sages ensure that a processor can continue to deliver
messages as agreed messages, even if, for some ring,
no processor on that ring has recently originated a
message. The Guarantee Vector messages also report
which messages have been received on a ring from
each of the other rings and, thus, allow a processor to
determine which messages can be delivered as safe
messages.

Network Topology Maintenance
In the Totem multiple-ring protocol, each gateway
maintains a data structure, called topology, listing the
rings within its connected component and the gate-
ways that interconnect them. The topology of the net-
work may be completely arbitrary. Since the gateways
have knowledge of the network topology, they can
adapt the message routing strategy to the current
topology. A processor that is not a gateway needs to
know only the rings from which it can expect to
receive messages, rather than the full topology of the
network.

If messages are originated on a ring of which a
processor is unaware, it will not wait for such mes-
sages and may prematurely deliver other messages
with higher timestamps. Similarly, if a ring becomes
inaccessible and the processor is not informed, it will
wait for a message from that ring, and message order-
ing will stop.

Processor faults and network partitioning are
detected by the single-ring protocol, which generates a
Configuration Change message to report the change
in the local ring. Each gateway on the ring analyzes the
Configuration Change message to determine its effect
on the topology. The multiple-ring protocol then gen-
erates and broadcasts a Topology Change message
reflecting the change. In particular, if a gateway finds

that a ring has become inaccessible, the
gateway removes the ring from its topology
and notifies the other processors and gate-
ways using a Topology Change message.
This removal of the ring ends the need to
wait for messages from that ring and allows
messages from other rings to be ordered.
Similarly, a Configuration Change mes-
sage and its consequent Topology Change
message can report if a ring is being added

to the topology.
A topology change must have the same effect for

each of the processors and gateways that were previ-
ously able to, and can still, communicate with each
other. Although the processors and gateways may
learn of a topology change at different physical times,
they must still agree on a common logical time for
the topology change and also on the set of messages
delivered before the topology change. To accomplish
this, Configuration Change and Topology Change
messages are timestamped and delivered in time-
stamp order along with the regular messages.

The Totem Process Group Interface 
An application running on top of Totem (and also on
top of other group communication systems) is struc-
tured as a collection of process groups. Each process
group is a set of processes cooperating to perform a
particular task of the application. A process can be a
member of several intersecting process groups, and a
process group can span several rings, as shown in Fig-
ure 5. Each message is addressed to one or more
process groups and is delivered to the processes that
are members of those process groups.

The Totem process group interface [11] provides
the services of sending and receiving messages
addressed to process groups and of creating, joining,
and leaving process groups. For each application
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process, the interface establishes a socket through
which the process communicates with Totem and
through which the process can poll to determine
whether messages are pending.

As the process group interface passes messages
from the application processes down to the multiple-
ring protocol, it fragments large messages and com-

bines small messages into larger messages
(packets) of a convenient size for transmis-
sion. On receiving messages from the multi-
ple-ring protocol, the process group
interface reassembles the messages and
enqueues them on the sockets of the process-
es that are members of the groups to which
the messages are addressed. Because the
process group interface receives messages in
the correct order, it need not be concerned
with message ordering.

On each processor, the process group
interface maintains the current membership
of any process group of which at least one
process on that processor is a member.
When a process joins or leaves a group, this
fact is disseminated throughout the network
to all members of the group by the process
group membership protocol.

Maintaining the consistency of message
ordering when a process can be a member of several
intersecting process groups, or when a process com-
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What Is Real Time?

T
raditionally, the design of real-time systems has been dominated by the synchronous hard real-time paradigm, which

is appropriate for embedded real-time systems [9]. All operations in the system are performed according to a pre-

planned schedule based on the worst-case workload and worst-case processor performance. The classical hard real-

time paradigm aims to provide absolute guarantees that every real-time deadline will be met.

In the real world, however, there are no absolute guarantees; there is a probability, small but non-zero, that all of the

processors in the system will fail. The best we can do is to determine the probability that a deadline will be missed and

ensure that the probability is small enough. For civilian airline flight control, a probability of 10–16 of missing a deadline is

small enough, based on an acceptable failure rate of 10–10 per hour and 106 deadlines per hour. Other applications allow high-

er rates of missing deadlines.

Complex real-time systems contain many sources of variability. There are variations in processor performance resulting

from caches, cycle stealing, and interrupt handling; there are variations in the execution of programs caused by special cases

and by heuristic algorithms; there are variations resulting from fault recovery; and there are variations in the workload. A pre-

planned worst-case design for a complex real-time system is necessarily a conservative design with adverse effects on perfor-

mance. Such systems are, therefore, seldom built as preplanned synchronous systems. Instead, they are built as event-driven

asynchronous soft real-time systems that provide a high probability, rather than an absolute guarantee, that real-time dead-

lines will be met.

Both hard and soft real-time paradigms are necessarily probabilistic. For soft real-time systems, we estimate the probabili-

ty that the system will generate the required results before the deadlines. For hard real-time systems, we estimate the prob-

ability that the system will generate the intended results. These probabilities are not easily calculated; more research is

required in this area.

In simple real-time systems, only one or a few operations are pending at any time, and processing and communication

latencies are important factors in ensuring that real-time deadlines are met. In complex real-time systems, many operations

may be pending, and the time these operations spend in queues is an important factor in determining whether real-time

deadlines are met. The lengths of the queues and the time the operations spend in them are determined by the throughput.

Consequently, complex real-time systems are better served by mechanisms designed for high throughput and predictable

latency, rather than by mechanisms that try to achieve the lowest possible latency at the price of decreased throughput.

106

105

104

0 200 400 600 800 1000 1200 1400
Message size in bytes

M
es

sa
ge

s 
de

liv
er

ed
 p

er
 s

ec
on

d

Single ring
8 processors

Unpacked messages

Packed messages

103

Figure 6. The throughput of the 
Totem single-ring protocol as a function
of message size



www.manaraa.com

municates with other processes outside its
group, is an interesting problem. Order-
ing messages independently within each
process group can lead to inconsistencies.
Consider three processes, p, q, and r, all of
which are members of two process groups,
G and H. Process p multicasts message m1
to group G. On receiving m1, q multicasts
message m2 to group H. Clearly, m1 causal-
ly precedes m2 but, if messages are ordered only with-
in groups, m2 might be delivered to process r before
m1. The only effective method known to us for ensur-
ing consistency in the presence of multiple intersect-
ing process groups is to impose a single global total
order on all messages for all process groups in the sys-
tem—the strategy adopted by Totem.

Performance 
The Totem system has been implemented in the C
programming language on Sun Microsystems IPCs
running SunOS 4.1 and on Sun SPARCstation 20s
running Solaris 2.4 over 10-Mbit/s and 100-Mbit/s
Ethernet. It uses the Ethernet hardware broadcast
capabilities and standard Unix facilities, particularly
Unix UDP sockets, to broadcast messages and to
transfer the token. The implementation has been
ported to several other types of machines.

Single Ring
We have measured the throughput (number of mes-
sages an individual processor delivers into the total
order per second) of the Totem single-ring protocol
on our network of eight Sun SPARCstation 20s run-
ning Solaris 2.4 over a 100-Mbit/s Ethernet. Each
processor was ready to broadcast at all times and the
extra load on the processors and on the Ethernet was
minimal. The flow-control parameters were adjusted
to maximize throughput.

As Figure 6 shows, the highest throughput results
from packing small messages into larger messages
(packets) within the application process. For small
messages, the primary determinant of throughput is
the cost of packing, rather than the cost of transmis-
sion and ordering. For the highest throughput, the

processors are saturated and no cycles are
left for the application. Real-world appli-
cations must operate with substantially
fewer messages per second than are
shown in Figure 6.

Detection of a processor crash
requires at most 50 milliseconds, and
recovery after detection typically requires
less than 20 milliseconds for this eight-

processor network. Further faults during recovery
may lengthen this time, but it remains bounded.

For real-time applications, the latency from origi-
nation to delivery of a message is also important. To
investigate the tail of the latency distribution, we
developed an analytic model [16]. The graph at the
left of Figure 7 shows the probability density function
for the latency to agreed delivery with approximately
1,000 Poisson arrivals per second on a ring of eight
processors with 1,000-byte messages. The graph at the
right of Figure 7 shows the corresponding probabili-
ty density function for a deterministic arrival process.
For a modern LAN, under normal conditions and
with good flow control, the probability of message
loss is very small, typically less than r = 0.00001.

As is evident, for low message-loss rates, the deter-
ministic arrival process has a lower probability of incur-
ring a longer latency to agreed delivery than the
Poisson arrival process. The Poisson arrival process
allows messages to bunch together, slowing the token
rotation and resulting in higher latencies for all mes-
sages in the bunch. If the nature of the system is such
that the generation of messages tends to be Poisson
rather than deterministic, it is necessary to operate at
lower message generation rates to avoid high latencies.
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We are currently extending the probability density
function analysis to include processor faults and mul-
tiple rings. These probability density functions pro-
vide the predictability needed for real-time
applications (see the sidebar, “What Is Real Time?”).

Multiple Rings
In general, token-based protocols scale poorly to
large systems, but Totem can operate on multiple
rings with a filtering mechanism at each gateway.
Messages addressed to a process group are forwarded
along one (or more) spanning trees, but only if need-
ed to reach members of the process group. Thus,

Totem exploits process-group locality and scales log-
arithmically, rather than linearly, to larger networks.

To investigate the performance of the multiple-
ring protocol with more processors than we currently
have in our laboratory, we developed an analytic
model. For the four topologies shown in Figure 8,
each containing 40 processors, we considered the
probability that a message must be forwarded through
the network. In this analysis, p1 represents the proba-
bility that a message originated in one half of the net-
work must be forwarded to the other half; p2
represents the probability that, within one half of the
network, a message must be forwarded from one
quarter to the other.

The graphs in Figure 9 show the mean latencies to
agreed and safe delivery for various traffic levels
(total number of messages generated in the network
per second) and for each of the four topologies with
p1 = 0.1 and p2 = 0.2. With these low probabilities,
process-group locality is good, and relatively few mes-
sages must be forwarded through the gateways. The
multiple-ring topologies show substantially lower
latencies than a single ring with the same number of
processors at the same traffic level and are capable of
sustaining substantially higher traffic levels with rea-
sonable latencies. Even when p1 = 1.0 and p2 = 1.0,
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the multiple-ring topologies exhibit
improved performance over a single ring,
particularly for safe messages.

Conclusions
The Totem system enables fault-tolerant
applications in distributed systems to main-
tain the consistency of replicated informa-
tion by providing reliable totally ordered
multicasting of messages. A hierarchy of protocols
delivers messages to processes within process groups
over a single LAN or over multiple LANs intercon-
nected by gateways. The message ordering strategy of
Totem employs timestamps to define a consistent total
order on messages systemwide and sequence numbers
to ensure reliable delivery of messages. Hardware
broadcasts, multiple rings, filtering of messages, and
process group locality enable Totem to achieve high
throughput and low predictable latency.
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